Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 12(2): plaa004, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32257089

RESUMO

Mediterranean high mountain grasslands are shaped by climatic stress and understanding their functional adaptations can contribute to better understanding ecosystems' response to global change. The present work analyses the plant functional traits of high-elevation grasslands growing in Mediterranean limestone mountains to explore, at the community level, the presence of different plant strategies for resource use (conservative vs. acquisitive) and functional diversity syndromes (convergent or divergent). Thus, we compared the functional composition and diversity of the above-ground traits related to resource acquisition strategies of subalpine and alpine calcareous grasslands in the central Apennines, a mountain region characterized by a dry-summer Mediterranean climate. We used georeferenced vegetation plots and field-measured plant functional traits (plant maximum height, specific leaf area and leaf dry matter content) for the dominant species of two characteristic vegetation types: the subalpine Sesleria juncifolia community and the alpine Silene acaulis community. Both communities are of particular conservation concern and are rich in endemic species for which plant functional traits are measured here for the first time. We analysed the functional composition and diversity using the community-weighted mean trait index and the functional diversity using Rao's function, and we assessed how much the observed pattern deviated from a random distribution by calculating the respective standardized effect sizes. The results highlighted that an acquisitive resource use strategy and relatively higher functional diversity of leaf traits prevail in the alpine S. acaulis community, optimizing a rapid carbon gain, which would help overcome the constraints exerted by the short growing season. The divergent functional strategy underlines the co-occurrence of different leaf traits in the alpine grasslands, which shows good adaptation to a microhabitat-rich environment. Conversely, in the subalpine S. juncifolia grassland, a conservative resource use strategy and relatively lower functional diversity of the leaf traits are likely related to a high level resistance to aridity over a longer growing season. Our outcomes indicate the preadaptation strategy of the subalpine S. juncifolia grassland to shift upwards to the alpine zone that will become warmer and drier as a result of anthropogenic climate change.

2.
New Phytol ; 220(2): 447-459, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29938796

RESUMO

High mountain ecosystems and their biota are governed by low-temperature conditions and thus can be used as indicators for climate warming impacts on natural ecosystems, provided that long-term data exist. We used data from the largest alpine to nival permanent plot site in the Alps, established in the frame of the Global Observation Research Initiative in Alpine Environments (GLORIA) on Schrankogel in the Tyrolean Alps, Austria, in 1994, and resurveyed in 2004 and 2014. Vascular plant species richness per plot increased over the entire period, albeit to a lesser extent in the second decade, because disappearance events increased markedly in the latter period. Although presence/absence data could only marginally explain range shift dynamics, changes in species cover and plant community composition indicate an accelerating transformation towards a more warmth-demanding and more drought-adapted vegetation, which is strongest at the lowest, least rugged subsite. Divergent responses of vertical distribution groups of species suggest that direct warming effects, rather than competitive displacement, are the primary causes of the observed patterns. The continued decrease in cryophilic species could imply that trailing edge dynamics proceed more rapidly than successful colonisation, which would favour a period of accelerated species declines.


Assuntos
Altitude , Mudança Climática , Plantas , Áustria , Biodiversidade , Geografia , Especificidade da Espécie
3.
Nature ; 556(7700): 231-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618821

RESUMO

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Assuntos
Altitude , Biodiversidade , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Plantas/classificação , Europa (Continente) , História do Século XX , História do Século XXI , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...